Using Scientific Visualization to Represent Soil Hydrology Dynamics

Jay Bell
Depart. of Soil, Water, and Climate
University of Minnesota

John Beck Joel Nelson Holly Dolliver

Waseca, Minnesota

Time + Space

Scientific Visualization Animations

Hillslope Transect

Toposequence

Summit

Shoulder

Footslope

Toeslope

Soil Organic Carbon

20.3 kg/m²

16.4 kg/m²

65 hectares

Topography

Soil Organic Carbon Present

Spatial-Temporal Animation Soil Organic Carbon

12,000 ybp

6000 ybp

Present

65 hectares

Soil Hydrology

Southern Minnesota Topography

Monitoring Transect – Waseca, MN

Waseca, Minnesota

Waseca, Minnesota Soil Toposequence

Summit

Lower Sideslope

Footslope

Toeslope

Extrapolating to the 3-D Landscape

Soil-Landscape Modeling

Soil Drainage
Class Prediction

Model Development

Field Observations

Field Sampling

- Grid soil sampling: 302 points

Drainage Class Prediction

$$C_j = c_{j0} + C_{j1}X_1 + C_{j2}X_2 + ... + C_{jp}X_p$$

C_j=Probability of Class j

X= terrain attribute

C= classification coefficient (matrix)

j= drainage class

 $c_{i0} = constant$

Model Calibration

Drainage class separation

- Weakest: poorly and very poorly
- Strongest: moderately well/somewhat poorly and very poorly

Model Validation

(Bootstrap Validation Approach)

- Soil-Landscape Model
 - 15-m DEM: best predictive capability
 - Classification Accuracy: 74%
 - 3% misclassified >1 drainage class away

Model Application

Probability of Poorly Drained Soil For Each Monitoring Site

Interpolate

Magnetic Resonance Imaging (MRI) Analysis Software

Amira

Brain Scan

University of Minnesota

- Fillmore County, MN Soil Borings ALL 1:6,000
- 2005 Imagery
 - 2003 Ortho-Imagery

- John Beck
- Joel Nelson
- UM Supercomputer Institute
- NRCS National Geospatial Development Center
- National Soil Survey Lab

Minor Lateral Flow

A

Bt

BC

C - loess

Major Lateral Flow

Depleted Loess
Old Red Till

